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Abstract— Virtual memory technique is used by many 
operating systems. This technique requires an efficient page 
replacement technique because it severely affects the 
performance of a computer system. Some of the page 
replacement techniques are first in first out, least recently 
used, optimal etc. Optimal has already been proven to be the 
best.  Considerable research has been done to evaluate theses 
policies and to develop new ones based on recency, frequency, 
token, and locality model parameters etc. This paper uses a 
histogram (based on page frequency) and memory access 
pattern based approach to visualize and to compare least 
recently used and optimal policies to determine their 
behaviors. The simulation uses reduced SPEC2000 
benchmark traces. Results show that histogram of least 
recently used and optimal policy equalizes as number of 
frames increases. Optimal policy histogram equalizes more 
rapidly than the histogram of least recently used one. Also 
pages of large frequency of occurrence contribute much to the 
total number of page faults in both least recently used and 
optimal page replacement algorithms. It visualizes and 
concludes that lru follows optimal in memory access pattern 
for page faults but with an increased number of frames in 
comparison to optimal. 
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I.  INTRODUCTION  
Operating system uses the concept of virtual memory to 

provide an illusion to a user having a very large amount of 
main memory available and allowing him/her to execute a 
program to be partially there in main memory [1]. In most 
of the operating systems virtual memory in implemented by 
demand paging. There are several advantages of using this 
concept like less I/O, efficient resource utilization etc. 
Performance of virtual memory is affected by the choice of 
page replacement technique used. There are several page 
replacement techniques suggested by different researchers. 
Elizabeth J. O'Neil1, Patrick E. O'Neil1, Gerhard Weikum 
uses LRU-K page replacement algorithm or database disk 
buffering [2]. Sedigheh Khajoueinejad, Mojtaba Sabeghi, 
Azam Sadeghzadeh used fuzzy cache replacement policy 
[3]. Optimal technique is proven to be the best but it can not 
be implemented because it requires future knowledge of the 
reference string. Least recently used policy approximates it 
and that is the reason different variations of lru have been 
implemented. It is well known however that there are many 
situations where lru behaves far from optimal [4]. Under lru 
an allocated memory page of a program will become a 
replacement candidate if the page has not been accessed for 
a certain period of time under two conditions: (1) the 
program does not need to access the page; and (2) the 
program is conducting page faults (a sleeping process) so 

that it is not able to access the page although it might have 
done so without the page faults. However, lru page 
replacement implementations do not discriminate between 
two types of lru pages and treat them equally [5]. So it 
means that lru can be made closer to optimal policy by 
making improvement in to that.  Some page replacement 
policies and some other definitions are given below. 
A. First in, First out (fifo) 

In this when a page is needed, the page that has been in 
memory for the longest period of time is selected for 
replacement. The reason is that a page that has only recently 
been swapped in will have a higher probability of being 
used again soon.  
B. Least Recently Used (lru) 

Least recently used page replacement policy is based on 
the assumption that the page reference pattern in the recent 
past is a mirror of the pattern in the near future. Pages that 
have been accessed recently are likely to continue to be 
accessed and ought to be kept in physical memory.  
C. Optimal method  

This policy selects a page for replacement which will be 
used after the longest period of time. Since this requires 
future knowledge of the reference string, this can not be 
implemented in the system. Hence this policy is used for 
comparative study only. 
D. Memory Access Pattern   

The memory access pattern shows how different pages  
are used as the application executes. X axis shows the 
progress of time while the Y axis shows which page 
numbers are used at different times during the execution of 
an application. It shows the memory access pattern of an 
application during execution of that particular application. 
E. Histogram  

The histogram is  very popular in digital imaging and 
other subjects. A histogram for any given data set shows the 
frequency of occurrence of every element in the given data 
set. It gives a clear idea about the high frequency element 
and low and medium frequency elements for a given data 
set. It is assumed that data set contains similar kind of data 
in the given data set.  

 
II. SIMULATOR 

 Here we develop a simulator that reads a memory trace 
and simulates the action of a virtual memory system with a 
single level page table in the single programming model. 
The simulator keeps track of what pages are loaded into 
memory. As it processes each memory event from the trace, 
it should check to see if the corresponding page is loaded. If 
not, it should choose a page to remove from memory. Here 
we take all pages and page frames of 4 KB size.  
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We used trace-driven simulations to obtain results. The 
traces were generated with the SimpleScalar toolset [6] 
using a simple in-order processor model. In all experiments, 
the page size was set to 4KB, which is the page size used in 
the Simple Scalar simulators. 

The set of benchmarks used is a subset of the SPEC 
2000 benchmark suite. We used reduced input data sets and 
such reduced inputs were not provided for all benchmarks. 
In order to reduce the simulation time, we used the large 
reduced input datasets described in [7]. The execution 
characteristics of these reduced input datasets are similar to 
the execution profiles of the SPEC 2000 reference datasets. 

It implements 2 page replacement algorithms least 
recently used and optimal. The simulator is written in C in 
MS-DOS environment.  

Numbers of frames are varied and no of page faults are 
calculated. Different traces are taken as inputs and numbers 
of page faults are calculated. Also MATLAB is used to plot 
memory access pattern plot for different traces and to plot 
histograms for page fault behavior of different traces.  

Each trace obtained from the SPEC2000 benchmark is a 
real recording of a running program. Real traces are 
enormously big having billions and billions of memory 
accesses. However, a relatively small trace is enough. Each 
trace only consists of one million memory accesses. Traces 
are gcc.trace.gz, swim.trace.gz , bzip.trace.gz. 

Each trace is a series of lines, each listing hexadecimal 
memory addresses followed by R or W to indicate a read or 
a write. For example, gcc.trace trace starts like this:  

0041f7a0 R 13f5e2c0 R 05e78900 R 004758a0 R 
 

III. SIMULATION RESULTS 
Applications swim, gcc, bzip show different memory 

access patterns. Swim application shows quite a stable 
pattern of memory access. Also different applications have 
different number of pages. Bzip application exhibits more 
correlated access than swim and gcc application. Figure 1, 
2, 3 shows the memory access pattern for reduced swim, 
gcc, bzip traces. 

Figure 4, 5, 6 shows histograms for 3 applications swim, 
gcc, and bzip respectively. From figure 7 to 24 it shows the 

histograms for page faults for different traces using different 
number of frames using lru and optimal. From figure 25 to 
42 it shows the memory access patterns for page faults of 
different traces using lru ,optimal with different number of 
frames. From figure 25 to 40 each vertical line shows a page 
fault and gap or valley indicate no page fault. X axis here 
shows the refernce time while y axis shows the page 
number.  

 From figure 4, 5, 6 it is clear that a few pages are used 
very heavily while few pages are used very rarely .It is 
clear from figure 10 page numbers near 100000 have very 
high frequency of occurrence .Also these page numbers are 
being used quite stably over a uniform pattern. 

Also from figure 7, 8, 9, it is observed hat as no. of 
frames increase for lru, page faults occur on same pages but 
with less frequency .Also as no of frames increases, lru 
equalizes no of page faults for different pages. 

From figure 10, 11, 12 (histogram for page faults for 
optimal), It is clear that optimal also equalizes the no of 
page faults as no of frames increases but more than lru.  

For lru in figure 7, the highest no of page faults are not 
generated for the highest frequency of occurrence page 
numbers. Also from figure 7, 8, 9 it is concluded that the 
page numbers on which more no. of page faults occur 
change with the increase in no. of frames. 

From figure 13, 14, 15,16,17,18 it is clear that both lru 
and optimal generate largest no of page faults for pages not 
having the highest frequency of occurrence. Also in both, as 
no of frames increases the pages on which largest no of page 
faults occur remain almost same. 

From figure 19, 20, 21, it is clear that for 5 frames lru 
generates largest no of page faults for pages of the highest 
frequency of occurrence. Also for lru, as no of frames 
increases, the pages on which more no. of page faults occur 
change. The same is true for optimal policy in figure 22, 23, 
24. Figure 25 to 42 show that lru approximates optimal by 
generating large number of page faults common to optimal. 
For swim trace; memory access patterns of lru and optimal 
are quite close as number of frames increases.  

 

                     
Fig. 1.    swim application                                           Fig.  2. gcc application                                 Fig. 3. bzip applicatipon 

 
 
 

       
     Fig. 4. swim application  histogram                       Fig. 5. gcc application histogram                  Fig. 6. bzip application histogram 
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     Fig.  7. Swim using lru and frames =5              Fig.  8. Swim using lru and frames =15        Fig. 9. Swim using lru and frames =5 0 

 
 

           
Fig.  10. Swim using optimal and frames =5     Fig.  11. Swim using optimal and frames =15   Fig. 12. Swim using optimal and frames =50 

 
 

      
Fig.  13. Gcc using lru and  frames =5                    Fig.  14. Gcc using lru and  frames =15                    Fig.  15. Gcc using lru and  frames =50 

 
 

       
Fig.  16. Gcc using optimal and  frames =5                Fig.  17. Gcc using optimal and  frames =15         Fig.  18. Gcc using optimal and  frames =50 

 
 

          
Fig.  19. Bzip using lru and  frames =5                    Fig.  20. Bzip using lru and  frames =15                    Fig.  21. Bzip using lru and  frames =50 

 
 

     
Fig.  22. Bzip using optimal and  frames =5                Fig.  23. Bzip using optimal and  frames =15         Fig.  24. Bzip using optimal and  frames =50 
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Fig.  25.  bzip using lru and frames=5                  Fig.  26  bzip using lru and frames =15                           Fig.  27. bzip using lru and frames = 50 

 
 

            
Fig.  28. gcc using lru  and frames= 5                        Fig.  29. gcc using lru and frames = 15                    Fig.  30. gcc using lru and frames =50 

 
 

            
Fig.  31. swim using lru and frames =5                             Fig.  32. swim using lru and frames =15                    Fig.  33. swim using lru and frames =50 

 

       
     Fig.  34. bzip uing optimal and frames =5                 Fig.  35. bzip using optimal and frames =15              Fig.  36. bzip using optimal and frames =50 

 

     
    Fig.  37. gcc using optimal and  frames =5                Fig.  38.gcc using optimal and frames =15              Fig.  39. gcc using optimal and frames  =50 
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Fig.  40. swim using optimal and frames =5              Fig.  41. swim using optimal and frames =15            Fig.  42. swim using optimal and frames =50 

 
 

CONCLUSIONS  
It is observed that optimal and LRU both may and may 

not generate largest no of page faults on page numbers of 
the highest frequency and it depends upon memory access 
pattern. It is found that as number of frames increases, both 
lru, optimal generates page faults on almost the same page 
numbers with less number of page faults. For both lru and 
optimal; the number of page faults on pages of high 
frequency of occurrence change with no. of frames. 

It concludes that pages of high frequency of occurrence 
contribute much to the total number of page faults for lru 
policy. Also high frequency pages contribution to the total 
number of page faults varies with the number of frames 
present in main memory. The same applies to the optimal 
policy. 

It is found that pages of high frequency of occurrence 
contribute a good amount to the total no. of number of page 
faults for both lru and optimal policies. Also in some cases, 
contribution of high frequency pages to total no of page 
faults is less in optimal than lru policy.  

It is also observed that histograms for both lru and 
optimal policies equalize as the number of frames increases. 
Also histogram for optimal policy equalizes more rapidly 
than lru. It is also observed that lru well approximates 

optimal. Lru generates a large number of same page faults 
(as in optimal) but with an increased number of frames than 
compared to optimal.  

To the best of authors’ knowledge; no such kind of work 
has been reported in the literature hence comparative study 
to the previous work is not possible. 
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